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Polynomial Shift States of a Chaotic Map 
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We present a piecewise-linear map of the unit interval in which the resolvent of 
the Frobenius-Perron operator, considered in a polynomial basis, has an essen- 
tial singularity at the origin. Associated with the essential singularity are poly- 
nomial shift states, which are obtained from creation and annihilation operators 
in non-self-dual function spaces. Correlation functions of general polynomial 
observables have decay components that vanish in a finite time. 
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I. I N T R O D U C T I O N  

A spectral decomposition of the Frobenius-Perron operator tl) solves the 
time evolution of a chaotic map on the level of the probability density. 
Decompositions that contain explicitly the decay rates and decay modes 
characterizing the approach to equilibrium have been obtained for a 
variety of one- and two-dimensional systems. (2-'4) These generalized spectral 
decompositions are valid for smooth densities expandable in terms of poly- 
nomials. In this domain, for a class of one-dimensional piecewise-linear 
maps, the Frobenius-Perron operator has discrete eigenvalues correspond- 
ing to polynomial eigenstates. The dual states, which are eigenstates of the 
Koopman operator, are generalized functions. 

Correlation functions for a class of observables in fully chaotic systems 
typically approach equilibriu m as a sum of exponentially decaying contribu- 
tions. A pure exponential decay contribution arises from a simple pole of the 
resolvent of the time evolution operator. If the resolvent has a multiple pole 
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there will be associated modified exponential decay with factors polynomial 
in time. Such variety of time dependence is already observed in the class of 
one-dimensional piecewiselinear maps with the slope of all the branches 
having the same absolute value. ~5'6) 

Here we examine a system belonging to this class with a new type of 
decomposition. The resolvent of the Frobenius-Perron operator, con- 
sidered in a polynomial basis, has an essential singularity at the origin as 
well as simple poles. The part of the spectral decomposition associated with 
the essential singularity is in terms of a basis of shift states. The shift states 
are polynomials (of odd degree) so that correlation functions involving 
polynomial observables will contain in general both exponential decay con- 
tributions and contributions that vanish in finite times. 

II. THE M A P  

We consider the four-branch piecewise-linear map on the unit interval 
phase space given by 

fi xt --4X t 
Xt+l = S A ( x t ) =  4x, 

~.4x, - 3 

O <~ xt < l/4 

1/4 ~< xt < 1/2 
1/2 ~< x, < 3/4 

3/4 <~xt<~ 1 

(1) 

The map is shown in Fig. 1. Probability densities, p(x, t), on the phase 
space evolve by application of the linear Frobenius-Perron operator, UA, 
as p(x, t + 1 ) = UA P(X, t). The Frobenius-Perron operator for this map 
acts on a density as 

UAp(X) ~ [p ( 4 )  + p  4 + p ( 3 - -  = 4 +P  

The map preserves Lebesgue measure and the stationary (equilibrium) 
density is the uniform density, peq(x)= 1. 

We consider the spectral decomposition of UA in a space spanned by 
polynomials. The action of UA on a polynomial gives another polynomial 
of equal or lesser degree. The operator UAi_S thus represented as a tri- 
angular matrix when acting'on polynomials and the eigenvalues are found 
along the diagonal. Associated with polynomials of even-degree 2n we find 
eigenvalues of 4 -2~. The odd-degree polynomials are associated with the 
eigenvalue 0 of infinite multiplicity. 

Because of the symmetry of the map t4) with respect to the midpoint of 
the unit interval, it is convenient to consider the reflection operator, R, 
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xt+ 1 

I 
1/4 1/2 3/4 1 

' X t  

Fig. 1. The map S A. 

acting on functions in the phase space as R f ( x ) =  f (  1 -  x). The Frobenius- 
Perron operator UA commutes with R, i.e., UAR = R UA. Thus, UA also 
commutes with the projection operators P§ and P_ defined by 

I+__R 
P •  2 (3) 

These operators project onto the even and odd parts, respectively, of a 
function with respect to the midpoint of the unit interval. The dynamics of 
the density thus decomposes into the independently evolving functional 
subspaces defined by the P§ and P_ projections. We will thus consider the 
spectral decomposition of UA separately in the two subspaces. 

A. Decomposition in P+ 

(4) The operator U A intertwines with P§ and the Frobenius-Perron 
operator of the 4-adic map, U4, as 

P + UA= UaP + (4) 
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where 

'E (4) (,3,+x)] U4P(X)--4 P + P 4 4 + p 4 (5) 

Since UA commutes with P+,  the dynamics of UA in this subspace is just 
like the 4-adic map, so this part of their spectral decomposition is identical. 
The generalized spectral decomposition of the 4-adic map is known. (2) The 
even-order right eigenpolynomials of UA are thus the even-order Bernoulli 
polynomials, B2,,(x), with associated eigenvalues of 4 -2". These eigenvalues 
correspond to the location of simple poles of the resolvent of UA con- 
sidered in a polynomial basis. The duals, i.e., left eigenstates, are the eigen- 
functionals, (Bz,[, defined by 

9=,,(x) (_ 1)2.-l 
= [ O ( z , , - l ) ( x -  1 ) _ ~ ( z , , - , )  ( x ) ]  ( 6 )  

(2n)! 

These functionals act on a density, p(x), as 

(Bz,, I p)  = dx B2,,(x) p(x) (7) 

The decomposition of UA in P+ thus has the explicit form 

oo 1 
UAP+ = ~ "~  In~><~l  (8) 

n ~ O  

where we have also employed a Dirac-style notation for the right eigen- 
polynomials. 

B. Decomposi t ion in P_ 

As noted above, the only eigenvalue of UA associated with polyno- 
mials in the P_ subspace is zero. But UAP_ :~ O, which tells us that the 
eigenstates associated with the zero eigenva!ue do not span P_ .  In con- 
trast, for the well-known two-branch tent map, (4) P_ is the null space of 
its Frobenius-Perron operator and any odd-symmetric polynomial is an 
eigenstate. 

To determine whether there are distinct eigenstates associated with 
the zero eigenvalue of UA we consider the nature of the singularity of its 
resolvent, i.e., 1/(Z--UA), at z=0 .  We write the resolvent in P_ ,  as 
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spanned by the odd-degree Bernoulli polynomials and their duals, in terms 
of its matrix elements in this basis as 

oo 

P - - ~ - - ' P - =  ~ IB2~+,><B2,,,+~I 1 - z -  UA .,..,'=o Z UA IB2.,,+,><B2.,,+,I (9) 

We then expand the resolvent in terms of the diagonal, U0, and off- 
diagonal (strictly triangular) part, flU, of UA to obtain for the matrix 
elements 

( B ~ + , I z _ u A I B E . , ' + ~ ) - - . _ _ o  ~ (B2,.+~Iz Uo 6Uz Uo IBzm,+x) 

= ~ (~z.,,+,l 1- OU IB2m,+,) (10) 
n = O  Z 

where we used that P_  
matrix elements, 

UoP_ is the zero matrix. Since the off-diagonal 

.. (2m' + 1 )! Bz.,,,_ z~ + x(1/4) 
(Bz~+~[ OU [Bz.,,+l) = 4z.,(2m + 1)! (2m'--2m + 1)! (11) 

are nonvanishing (for m' > m), powers of 1/z up to ( 1/z)m'--" + l appear in 
(10). Hence, in (9) there appears an essential singularity at z =0.  This 
means that UA is not diagonalizable in this functional space but is only 
reducible to one Jordan block of infinite size, with zeroes on the diagonal. 

When UA acts on a polynomial in P_  of degree 2n + 1 it gives a poly- 
nomial of degree 2 n -  1. Denoting a shift polynomial of degree 2n + 1 as 
r we have 

V~r162 (12) 

for n >I 1, where we have incorporated here any weight factors into the 
definition of the states. The first-degree polynomial associated with the zero 
eigenvalue is the only eigenstate of UA in P_ .  This state is unique (up to 
a constant factor) and is r  We refer to this state as the 
vacuum state. The decomposition of UA in P_  is formally thus 

oo 

n----1 
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III. CONSTRUCTION OF P O L Y N O M I A L  SHIFT STATES 

We first note that any polynomial in P _ ,  say p2~+~(x), may be used 
to generate a set of shift states running down to the vacuum state as 
{P2~+ ~, UAP2,+ ~, U2p2.+ ~,..., U~AP2,,+ ~}. Since UA UtA = 1 we may con- 
sider applying UtA successively to P2n+t(X) tO generate shift states above 
p2.+~(x). But these states will not be higher-degree polynomials. The 
operator UtA acts on a function as UtAf(x)=f(SA(x)),  where SA(x) is the 
rule ( 1 ) for the map. 

There are several ways to construct complete families of polynomial 
shift states. Since the action of UA reduces the degree of a shift polynomial 
by two, it motivates the consideration of families of shift polynomials that 
satisfy 

d 2 

dx 2 ~+I(X)=V2,,_I~PZ~_I(X) (14a) 

For states .in this family UA will act in general as a weighted shift, 

UA r l(X) = WZ._~ r (14b) 

The weight w2~_ ~ may be found by comparing the highest degree terms on 
the fight hand sides of both (14a) and (14b), 

02n--1 
w2~-l =2.42~+1 (15) 

The fact that (14a) and (14b) are consistent may be proven from the inter- 
twining relation: (d2/dx 2) UA = (1/42) UA(d2/dx2). To construct ~2~+1 
from ~2~-1 we invert (14a), i.e., integrate twice, and use (14b) to determine 
the constants of integration. 

Suppose that the state ~2~-~ is known and is expanded in terms of 
Bernoulli polynomials as 

n 

~z~_x(x)= ~ b tz"-l) B2j_I(x) (16) 2j--I  
j = l  

We want to find the expansion coefficients, ~,-tz.+ 1) ~'2j-~ of the next shift state, 
(7) 2 2 ~/2~+l(x). Using that (d /dx  ) B2j+l(x)=2j(2j+ 1) B2j_l(x) we obtain, 

from (14a) 

b (2,,- ~) 
2y-1 j =  l,..., n (17) b(2,, + 1) ,j+~ = v ~ _ ~  , , ,  

2j(2j + " ]  



Polynomial Shift States of a Chaotic Map 1093 

The coefficient, b] z~+~), of the vacuum component of ~z,+~(x) is still 
undetermined. Since this component is annihilated by UA and by the 
second derivative operator, we need to go one more step up; that is, con- 
sider ~kz,+3(x) in order to determine this coefficient. The state ~'z~+3(x) is 
obtained from (14a) by integrating q/2,+ l(x) twice as, 

~2n+3(x)=b]2n+3)Bl(x)+Vzn+l ~ b ~z'+l) 2 j + l  
j=O 

B2j+dx) 
(2 j+  3)(2j+ 2) 

( t8)  

Using (14b) we extract the Bl(X ) component of I]/2n+l(X ) from 02n+3(X) as 

W 2 n + l  
- ~  <~,1 u~ 10z~+~> (19) 

Then from (18), using (17) and that (Bll  UA IB2j+3) = B2:+3(1/4) we can 
solve for b~ z~+ l) to obtain 

h(zn_1) B2j+3(1/4 ) b]Z,,+ l) = 2i 43vz~- l '-" 2j-- 1 (20) 
- 4  -2" (2j)('-~+ 1)(2j+ 3 ; i ~ +  2) j = l  

The above procedure can be written in terms of a creation operator, Uc, 
which acts as Ucr  r l(x). The creation operator is given by 

=,-=l 2j~2-)+ 1) 

2.43 B2:+3(1/4) q 

IB~)[  (B2:  I 1 - 4 - z ~  (2 j+  3)(2j+ 2) ~ +1 
(21) 

If we take vz,_l = (2n + 1)(2n) then we will generate shift states that are 
monic polynomials. We start from the vacuum state and work our way up. 
Explicit forms of the first few monic polynomial shift states generated this 
way are 

1 r 

0~(x) = x ~ - ~ x  ~ + ~ x -  

r ~(x) = x ~ - ~ x" + ~ x  ~ ~ x ~ + ~ x- ~7o 

r = x7 - ~x ~ + ~ x  ~ - r~'x4 +~'~-~ --~ x ~-  ~-~6 x + 6~-G 

~9(x) = x 9 - 9xS + 8x 7 - 7x 6 + ~54x 5 - h x  4 -  2-~335 x 3 

7424 29 
~" 18~  x2  -~" 36i4625 X 7229250 

(22) 



1094 Driebe and Ord6fiez 

A. Dual Shi f t  States 

The duals, ~-2,+l(x), of the generic shift polynomials obeying (12) 
satisfy (q~-z, + l [ q~2,,, + l)  = J., m. They can be obtained from successive 
applications of U~ to ~l(x) as (U~)" ~l(x)=~z~+~(x). The dual of the 
vacuum state in terms of the duals of the Bernoulli polynomials and the 
expansion coefficients of the shift states is 

- 1 { b]3) B3(x)-1 (b]5) b(35)b]3)) ~5(x) . . . .  t (23) - 

We note that U* c acts as an annihilation operator on the dual states as 

For the families of states obeying (14) the higher-order duals can be 
expressed simply in terms of the vacuum dual state as 

aI.•i I " d 2n 

(ffz~+ll = [ ' v ~ + , ] - '  (~ l l  dxZ. (24) 
k - - - 0  

IV. C O R R E L A T I O N S  A N D  P O W E R  S P E C T R A  

The effect of the polynomial shift dynamics can be seen on correlation 
functions involving observables that are polynomials in x. The correlation 
between two observables, A(x) and B(x), is defined by 

1 T - - I  

l A'A(x) (25) CnA(t) = lim -~ ~ B(x, +,) A(x,) = ~o dx B(x) U 
T - - *  o v  ~ ----- 0 

where we used the ergodicity of the map to replace the time average by a 
phase space average with respect to the equilibrium uniform density. 

To see the effect of the shift dynamics we need to consider one of the 
observables to be at least a third degree polynomial. The simplest choice 
for illustration is to take B ( x ) = x  and A(x)-~ ~2n+ I(X) �9 Then we obtain 

n 

(x l  = Z 
m-----O 

(26) 

where ak = ~ dx x ~  + l(x). So the equilibrium value of the correlation, 
which here is zero, is attained for t i> n + 1. 
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The power spectral density, SBa(og), is given by the Fourier transform 
of the correlation function as SBA(O9)= Zt=O COS cotCBa(t). For the above 
correlation we thus obtain 

S~r ) = ~ cos cot an--m Ot, m 
t----O m=O 

= ~ a,,_ m cos m ~  (27) 
m--O 

V. C O N C L U D I N G  R E M A R K S  

We have presented a simple piecewise-linear map where correlation 
functions among polynomial observables have decay components vanishing 
in finite times. This behavior is a consequence of part of the spectral 
decomposition of the Frobenius-Perron operator of the map being in terms 
of polynomial shift states. This is also reflected in the analytic structure of 
the resolvent of the Frobenius-Perron operator. It has an essential singu- 
larity at z = 0. 

Having a basis of shift states, like those obeying (12), motivates the 
consideration of coherent eigenstates tS) constructed from them as 

oo 

~z(X) = ~ 7,n~2n+ l (X)  ( 2 8 )  
n = O  

But the radius of convergence of this series is zero, as can be determined 
from a careful consideration of the weight factors of properly normalized 
shift states. This is in contrast to the situation for the r-adic map, which has 
unweighted trigonometric shift states and regular coherent states. ~2'3's) It 
may be possible though to give a meaning here to (28) as a distribution. 

An interesting feature of the analysis we have presented is the non-self- 
dual functional space setting for creation and annihilation operators. 
Instead of the pair of operators occuring in a standard quantum mechanical 
context, we have four operators: UA, UtA, Uc and Utc . This is analogous to 
the second quantized formulation of the generalized spectral decomposition 
of the quantum mechanical Friedrichs model, tg) 
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